Ready, Set, Go!

Ready
Topic: Writing functions in vertex form.

Write each function in vertex form. Identify the vertex, axis of symmetry, direction of opening, and the domain and range of each function.

1. \(y = x^2 + 4x - 21 \)
 - Vertex Form:
 - Vertex:
 - Direction of Opening:
 - Domain:
 - Range:
 - \textbf{Axis of Symmetry:}
 - \textbf{Y-int:}

2. \(y = (x + 7)(x + 9) \)
 - Vertex Form:
 - Vertex:
 - Direction of Opening:
 - Domain:
 - Range:
 - \textbf{Axis of Symmetry:}
 - \textbf{Y-int:}

3. \(y = -(x - 15)(x + 3) \)
 - Vertex Form:
 - Vertex:
 - Direction of Opening:
 - Domain:
 - Range:
 - \textbf{Axis of Symmetry:}
 - \textbf{Y-int:}
 - \textbf{X-int(s):}

4. \(y = x^2 + 2x - 35 \)
 - Vertex Form:
 - Vertex:
 - Direction of Opening:
 - Domain:
 - Range:
 - \textbf{Axis of Symmetry:}
 - \textbf{Y-int:}
 - \textbf{X-int(s):}
Set

Topic: Graphing and writing equations of quadratic functions

One form of a quadratic function is given. Fill in the missing forms.

<table>
<thead>
<tr>
<th>5. Standard form:</th>
<th>Vertex form:</th>
<th>Factored form:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = (x + 5)(x - 3))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (Show the vertex and at least 2 points on each side of the vertex.)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph

<table>
<thead>
<tr>
<th>6. Standard form:</th>
<th>Vertex form:</th>
<th>Factored form:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = -3(x - 1)^2 + 4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (Show the vertex and at least 2 points on each side of the vertex.)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph
7. **Standard form:**

\[y = -x^2 + 10x - 25 \]

Vertex form:

Factored form:

<table>
<thead>
<tr>
<th>Table</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Show the vertex and at least 2 points on each side of the vertex.)

8. **Standard form:**

Vertex form:

Factored form:

<table>
<thead>
<tr>
<th>Table</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(y)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Show the vertex and at least 2 points on each side of the vertex.)
Go

Topic: Converting between three forms of quadratic functions.

Convert the given function into the indicated forms (standard, vertex, and/or factored forms).

9. \(y = x^2 + 12x - 64 \)
 Factored Form:
 Vertex Form:

10. \(y = x^2 - 64 \)
 Factored Form:
 Vertex Form:

11. \(y = 3x^2 + 24x + 49 \)
 Vertex Form:

12. \(y = 2x^2 - 12x + 23 \)
 Vertex Form:

13. \(y = 2(x + 8)(x - 2) \)
 Standard Form:
 Vertex Form:

14. \(y = (x - 5)(x + 3) \)
 Standard Form:
 Vertex Form:

15. \(y = (x + 2)^2 - 16 \)
 Standard Form:
 Factored Form:

16. \(y = (x - 4)^2 - 81 \)
 Standard Form:
 Factored Form:

Topic: Factoring quadratic expressions.

Factor the following quadratic expressions, if possible.

17. \(x^2 - 5x + 6 \)
18. \(x^2 - 7x + 6 \)
19. \(m^2 + 16m + 63 \)

20. \(2x^2 - 17x + 30 \)
21. \(12n^2 - 8n + 1 \)
22. \(3x^2 + 11x + 10 \)

23. \(36x^2 + 84x + 49 \)
24. \(64x^2 - 9 \)
25. \(25x^2 + 20x + 4 \)