7.3 Inscribed vs. Central Angles; Arc Measure vs. Arc Length

(Adapted from MVP RSG 7.3: https://www.mathematicsvisionproject.org/uploads/1/1/6/3/11636986/m2_mod7_se_52017f.pdf)

Topic: Trigonometric Ratios

Solve each right triangle below by finding the value of the missing sides and angles (correct to the nearest tenth).

1. \[\triangle ABC \]
 - \(a = ____ \)
 - \(b = ____ \)
 - \(\angle A = ____ \)

2. \[\triangle ABC \]
 - \(a = ____ \)
 - \(c = ____ \)
 - \(\angle A = ____ \)

3. \[\triangle ABC \]
 - \(a = ____ \)
 - \(b = ____ \)
 - \(\angle A = ____ \)

4. \[\triangle ABC \]
 - \(a = ____ \)
 - \(\angle A = ____ \)
 - \(\angle B = ____ \)

Topic: Minor and Major Arc and Semicircles

In \(\odot S \), \(\overline{TE} \) and \(\overline{KR} \) are diameters with \(\angle TSR = 42^\circ \). Determine whether each arc is a minor arc, a major arc, or a semicircle. Then, find the degree measure of the arc indicated.

5. \(\overparen{TR} \)
 - \(\angle TKS = ____^\circ \)

6. \(\overparen{TR} \)
 - \(\angle TKR = ____^\circ \)

7. \(\overparen{TR} \)
 - \(\angle TRK = ____^\circ \)

8. \(\overparen{KE} \)
 - \(\angle KER = ____^\circ \)

Topic: Inscribed and Central Angles

Refer to \(\odot E \) for the following problems. If \(\angle TEG = 21^\circ \) and \(\overline{TR} \) is a diameter, determine whether each arc is a minor arc, a major arc, or a semicircle. Then, find the degree measure of each arc indicated.

9. \(\overparen{TG} \)
 - \(\angle TAG = ____^\circ \)

10. \(\overparen{ATR} \)
 - \(\angle TAR = ____^\circ \)

11. \(\overparen{AR} \)
 - \(\angle ARG = ____^\circ \)

12. \(\overparen{TAR} \)
 - \(\angle TAR = ____^\circ \)

13. \(\overparen{ATG} \)
 - \(\angle ARG = ____^\circ \)

14. \(\overparen{AR} \)
 - \(\angle ARG = ____^\circ \)

15. \(\overparen{RAR} \)
 - \(\angle RAG = ____^\circ \)

16. \(\overparen{TAG} \)
 - \(\angle TAG = ____^\circ \)

17. \(\overparen{G} \)
 - \(\angle GAR = ____^\circ \)

In the circle to the right, \(\angle AD = 124^\circ \), \(\angle BE = 48^\circ \), and \(\angle DE = 72^\circ \). Find each angle measure indicated.

18. \(\angle DBA \)
 - \(\angle DBA = ____^\circ \)

19. \(\angle BAE \)
 - \(\angle BAE = ____^\circ \)

20. \(\angle ADE \)
 - \(\angle ADE = ____^\circ \)
Find the value of the angle or the intercepted arc indicated in the figure below. If necessary, round all answers to the nearest tenth. \((\text{NOTE: Circles may not be drawn to scale})\).

21. \(\bigcirc M\) with \(m\angle LMN=110^\circ\)

 - \(m\angle L\overline{N} = \)
 - \(m\angle O\overline{LN} = \)
 - \(m\overline{OL} = \)

22. \(\bigcirc B\) with \(m\angle ABC=130^\circ\)

 - \(m\overline{AC} = \)
 - \(m\angle CAD = \)
 - \(m\overline{DA} = \)

23. \(\bigcirc F\)

 - \(m\overline{EG} = \)
 - \(m\angle E\overline{HG} = \)
 - \(m\angle G\overline{EH} = \)
 - \(m\angle G\overline{FH} = \)

24. \(\bigcirc M\) with diameter \(\overline{NK}\)

 \(\overline{NL}=12\) and \(\overline{KL}=5\)

 - \(NK = \)
 - \(m\angle N\overline{LK} = \)
 - \(m\overline{NJ}\overline{K} = \)
 - \(m\angle N\overline{LK} = \)
 - \(m\overline{KL} = \)
 - \(m\overline{NL} = \)

25. How can a triangle be used to show the connection between an inscribed angle and the angle measure of the arc it intercepts? \((\text{HINT: Think about what is true about the angle measure in any triangle and what is true about the arc measure for an entire circle})\).

Topic: Arc Length

Find the length of the arc indicated below. Leave your answer as a fraction in simplest form.

26. \(\overline{AB} = \)

 \(\bigcirc\) with \(12\text{ mm}\) at \(45^\circ\) from \(A\) to \(B\)

27. \(\overline{CAB} = \)

 \(\bigcirc\) with \(8\text{ cm}\) at \(120^\circ\) from \(A\) to \(B\)